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Abstract

We consider the problem of representing geometric entities in a perceptual coordinate system. A geometric object (for
instance a closed contour or a surface patch) described by a finite number of parameters is mapped onto an arbitrary
collection of perceptual coordinates via a psychophysical experiment, resulting in a collection of marginal probability dis-
tributions. Viceversa, a set of perceptual coordinates can be mapped onto a probability distribution of parameters, and a
pointwise inverse can be constructed by tracing the mode(s) of the density. We use such a map to modify the shape of an
object by controlling perceptual characteristics, as opposed to manipulating the geometry directly. We choose to test our
hypothesis on a simple one-dimensional experiment to map the shape of eyeglass frames to the perceived character of the
person wearing them. We believe that perception-driven geometric manipulation presents vast opportunities in a number of
commercial applications of mass-customized design.

1 Introduction

Physical objects elicit perceptual responses. For instance, cars differ in their appearance as one may look more “aggressive”
or less “goofy” or more “sporty” (Figure 1). Similarly, a face – intended as a particular surface in space supporting a particular
radiance distribution function – may appear attractive, intelligent, driven, intense etc. depending upon its particular geometry
and photometry. Even for the same face, subtle changes such as the shape of eyeglasses can alter the perceived character
(Figure 1). Such responses may be quantified subjectively in terms of the “amount” of certain perceptual characteristics, or
“labels”, along with a choice of labels themselves. Since the perceptual response is subjective, a given object presented to
a number of human subjects elicitsnot an individual response, but a (marginal)distribution on each label, as suggested in
Figure 2. Naturally, such a distribution depends upon a number of nuisances due to cultural, historical, geographical factors,
and it is not time-invariant: a car that looked aggressive to a thirty five year-old lawyer in Spain in the sixties my appear tame
to a twenty year-old asian actress in California today, although it may still look aggressive to a teen-aged male student in
Nepal. Overlooking nuisance factors can be dangerous, for it can lead one to believe that there is a one-to-one “universal” map
between geometric and perceptual features. This point of view was taken to an extreme by the pseudo-scientific movement
of Phrenology in the nineteenth century [?, ?]. The proponents of Phrenology did not limit themselves to believe that there is
a map between geometric features and perceived character; they believed that there is a map between physiognomic features
and personality traits. For instance, if the slope of somebody’s forehead was within certain values the person was a potential
murderer!

In this paper we take a far less dogmatic approach: we consider different representations of a geometric shape space (for
instance the space of closed piecewise smooth curves after factoring out the Euclidean group) and use data to derive maps
between distributions in different representations. Although the methodology we describe is general, in the interest of clarity
we illustrate our ideas on a one-dimensional example, that is the design of eyeglass frames based on perceptual, as opposed
to geometric, specifications.

1.1 Applications

Giving a perceptual coordinatization of a geometric space – characterizing the map between geometry and perception – can
be useful in a wide variety of applications. For instance, how can a plastic surgeon shape the nose of a patient so that she can

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2001 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2001 to 00-00-2001  

4. TITLE AND SUBTITLE 
’Controlling Beauty’ Perceptual Representation and Control of
Geometric Shape Spaces 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of California, Los Angeles,Computer Science Department,Los 
Angeles,CA,90095 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

10 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Figure 1:Friendly? aggressive?

look more assertive? How does a makeup artist make an actor look more dramatic? How can one modify clothes so that, once
worn, they make the person look taller, or - lest we say - less fat? In all of these cases, one would like to determine how the
geometry needs to be modified in order to achieve a given perceptual goal. This can be extended to manufacts: for instance,
in designing eyeglass frames, how does the shape need to change in order for the final product to have a given perceptual
characteristic? How does an industrial designer modify the tail-lights of an automobile to make it appear more sporty or
classy? Such a knowledge is currently domain of artists and designers, who exhert it through a process that seems to defy
formalization. Certain labels (for instance “beauty”) that are very broad and losely defined will have a very broad geometric
correlate, and will therefore correspond to broad densities. However, we believe that in well-defined and restricted domains
it can be made analytical and, to a certain extent, be controlled.

In addition to mapping static shapes to perceptual characteristics, one may want to mapdynamicmodels. For instance,
how can one adjust the dynamics of a moving articulated body (e.g. a simulated human character) so as to make it appear
assertive, or tentative, or drunk?.

Our goal is to be able to place all these questions on a solid quantitative footing. Doing so requires a blend of geometry,
statistics, dynamical systems and perception psychology. While most of the data will be gathered in controlled experiments,
artistic knowledge and experience can still be used to guide the experiments and the data analysis.

1.2 Contributions of this paper and relation to previous work

This paper poses the problem of representing a finite-dimensional shape using a finite dimensional set of perceptual labels.
This problem is present “in nuce” in several statistical techniques, for instance collaborative filtering [?], although to the best
of our knowledge the attempt to build an explicit map between the two representations is novel.

Of course this paper relates to the broad literature on perception and representation; although we do not have space to
venture into an extensive review, for a historical perspective the reader can refer to [?, ?]. On the relation between design and
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Figure 2:A shape described by a finite number of parameters may be represented as a point in a linear vector space (left).
When presented to a number of human subjects, it induces a distribution of perceptual characteristics or “labels”.

perception one can see for instance [?]. This work is losely related to work in color vision where one is interested in mapping
color names (“labels”) to either physical properties or neural responses, and to work in perceptual categories that we do not
review in detail here.

A research agenda similar to ours has been carried out in [?] for the case of human faces, where a test image is projected
onto the span of a set of solid models acquired with 3D scanners and labeled by human observers. The “character” of the
model can then be modified by increasing the weight of faces labeled with that character in a linear combination.

While the “direct” map from geometric to perceptual coordinates is built by means of a straightforward psychophysical
experiments, the inverse is a set map and is not easily characterized. In a probabilistic sense, the experiment can be character-
ized by a joint probability density between geometric features and labels; given a prior on labels, the experiment determines
the posterior marginal densities, and inversion can be performed as usual using Bayes’ rule. However, since we are interested
in a point-inverse, we propose deriving a reduced map by considering the maximum of the probability density defined by the
inverse map when such a maximum exists and is unique. When the pre-image density is multi-modal, we do not define an
inverse map. How to choose independent labels in such a way that their pre-image densities are unimodal is an interesting
question that we leave for future research.

We test our hypothesis on a simple one-dimensional example that relates to the shape of eyeglasses and their impact on the
perceived character of the person wearing them. We characterize the shape of the eyeglasses as a closed contour and allow
only one degree of freedom.

2 Perceptual representation of geometric features

Consider a geometric object, such as a collection of curves and surfaces, represented by a finite numberN of parameters
x ∈ G ⊂ RN . These can be the parameters of a CAD model for a product, or the parametric description of a set of geometric
features. Now define a numberM of “labels” as perceptual characteristicsφ1, . . . , φM . These are functions

φi : RN −→ [0, 1]; x 7→ φi(x)

onto the normalized “intensity” of labeli. Such labels are part of the design process and depend upon the domain of
application. For instance, a car manufacturer may choose the adjectives that are most expected in a particular brand or market
segment. Note that the labels are not necessarily independent, in the sense of elements in a vector space: given a pointψ
there may be different combinations of labels that represent it:

ψ =
M
∑

i=1

αiφi =
M
∑

i=1

βiφi
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whereαi 6= βj for at least one pair(i, j). Consider nowoneexperiment, where for a particular pointx ∈ G a subject is
asked – in a forced choice paradigm – to assign a value for each label. This experiment can be represented as a map fromG
to theM -unit cube[0, 1]M :

E : G −→ [0, 1]M ; x 7→ (φ1(x), . . . , φM (x)) .= y.

Naturally, the experiment is not an injective map. Indeed, the pre-image of the experimentE−1(y) ⊂ G can be any subset
of G, not necessarily connected. For instance, many different faces may be perceived as being equally assertive even though
their physiognomy is very different.

3 Mapping distributions

Consider now not one butK experimentsE1, . . . , EK all mapping the same pointx ∈ G onto the unit cubeΦ. The ensemble
of experiments,EK mapsG onto ensembles of values inΦ. Such ensembles can be organized into one histogramhi for each
labelφi:

EK : G −→ PM ([0, 1]); x 7→ (h1(x), . . . , hM (x))

wherehi : [0, 1] → [0, K]. The normalized histograms can be approximated by probability density functionspi, i = 1 . . .M
defined on the unit interval, for instance using Gaussian mixtures. Consequently, an ensemble experiment for a particular
shapex ∈ G can be represented as a map fromG to the set of marginal densitiespi. Some of these densities may be
uninformative (i.e. uniform in the unit interval), indicating that the particular pointx does not elicit a response on labeli.
Some may be multi-modal, and yet others may be concentrated around a single mode. In general, one can expect the joint
density functions to be multi-modal, uninformative along certain directions, and highly complex.

Consider now performing the repeated experimentEK on each point of a discrete lattice onG. Let xi, i = 1 . . . l be the
points on the lattice. Correspondingly, after performing the experiment we collect a set of densitiespj

i , i = 1 . . . M, j =
1 . . . l that summarizes the experiment as a map fromG to Φ.

From a statistical point of view, the underlying assumption is that there is a joint probability densityp(x, φ) and that, given
a prior on the coordinatesx, the experiment is described by the densityp(φ|x), of which we measure the marginals. The
inverse in probabilistic terms is justp(x|φ) which can be computed using Bayes’ rule. We are insterested in using this model
to extract a point-map for the inverse. To this end we consider the map that associates a certain set of coordinates onΦ (not
just a particular point onΦ, since it may have many different coordinatizations) to points on the lattice that correspond to it
via the experiment:

(EK)−1 : [0, 1]K −→ G; y 7→ {x | (φ1(x), . . . , φM (x)) = y}.

From these pre-images, we construct a histogram inG (by evaluating the density of points in the pre-image) and fit a density
using a Gaussian mixture. This construction defines a map from points onΦ onto densities onG:

(EK)−1 : Φ :−→ P(G); y 7→ g where g : G → [0, 1].

This is illustrated pictorially in Figure 3. When a point moves in perceptual space, the mode(s) of the induced density will
describe a trajectory in geometric space. Note that the trajectory of the pre-image of a smooth curve inΦ is a family of
density functions onG, and the deformation of such functions may not necessarily be continuous. In particular, modes of the
density may split and merge, appear and disappear.

4 Test study

Our goal in this section is to isolate a simple instance of the problem where our hypotheses can be verified. We therefore
concentrate on a one-dimensional example, that is a simple geometric object that can be described by a one-dimensional
parameter and mapped to a scalar label:M = N = 1. This allows us to easily visualize the maps from geometric to
perceptual coordinates and their point-inverse.

In Figure 4 we show the test data that was presented toK = 20 subjects who were asked to rank the perceived assertiveness
φ of the test subject on a scale from1 to 10. Each subject performed40 randomized tests, the first10 of which were
discarded from the final statistics since the subjects required a few samples to calibrate the scale. The data was obtained by
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Figure 3:A point in perceptual space induces a distribution in the corresponding shape: the levelsets of the density are shown
as closed dashed curves. Changing perceptual characteristics induces changes in geometric ones. This is shown pictorially
as the mode of the density describing a trajectory in geometric space as the pre-image of a straight line in perceptual space.
Modes can split and merge and in general the pre-image can be arbitrarily complex.

superimposing to a photograph of a female model downloaded from the Web a closed contour representing the rim of a set of
eyeglasses. The upper edge of the rim consists of a Bezier curve with two fixed points (the hinges) and two variable tangents.
The horizontal coordinatex of the intersection of the two tangents was randomized uniformly in an interval discretized into
10 segments. The histograms of the results of the experiments are shown in Figure 5. The histograms were then interpolated
using a mixture of Gaussians. Conversely, for each point in perceptual coordinatesφ, the pre-image of the experiment is
shown in Figure 6. As it can be seen, the pre-image density is to a good approximation unimodal. Since the pre-image
density is unimodal, we use its mode as the pointwise inverse map, and use the function as the map from perceptual to
geometric coordinates. This map would allow a designer to vary the amount of perceived assertiveness without directly
manipulating geometry.

Figure 4:Test data for the one-dimensional experiment “assertiveness”. Randomize frames were presented to subjects in a
forced-choice paradigm.
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Figure 5:Histograms of the map from geometric to perceptual coordinates.

In the next experiment (Figure 7), we consider a more ambiguous “label”: we have presented subjects with images of
the same face where we randomized the height of the frames, and we asked them to quantify how “fashionable” the person
wearing the frames looks. The histograms are shown in Figure 8 for 10 values of lens height. As it can be seen, the densities
split into two modes at the extrema: this means that frames that are very narrow and very tall are either considered to be very
fashionable or very unfashionable. This can be seen by following the modes in Figure 9, that bifurcates at the extrema.

5 Discussion

Due to the unusual nature of this work, we expect that several criticisms will be raised for which we have no satisfactory
answer. For instance, is this a paper in Computer Vision/Pattern Recognition? Is the one-dimensional experiment discussed
in the test case representative, or would the map inversion process described be subject to the curse of dimensionality when
one wanted to integrate out nuisance parameters?
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Figure 6:Pre-image histograms mapping perceptual coordinates to geometry. Notice that the histograms are well approxi-
mated by unimodal densities.

Figure 7: Test data for the experiment “fashionable”. The images were randomized and presented to subjects in a forced-
choice paradigm.
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One issue that we would like to stress is that the fact that the map recovered depends upon how, where, when and why the
psychophysical data are collected is a desirable feature, andnot a limitation. Our goal is to map a particular instance of an
experiment, and we do not try to capture “universal” structure. For instance, in the case of eyeglasses, one cares to capture
the taste and perception of a particular clientele, not of humanity at large.

We see the unsolved issues as opportunities for further research and hope that they will not detract from the attempt of
quantifying and controlling the perceptual response to geometric features. The potential payoff in controlling the perceptual
outcome in engineering design as well as other applications is, in our view, phenomenal, and we think that Computer Vision
and Pattern Recognition ought to play a key role in the process.
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Figure 8:Histograms for the experiment “fashionable”: the modes bifurcates, indicating that excessively thin or tall glasses
can be perceived equally likely as very fashionable or very unfashionable.
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Figure 9:Trajectory of the modes of the density for the experiment “fashionable”: the modes bifurcate.
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